Das eigene KI-Modell programmieren: So geht's mit Swift

Wie funktioniert eigentlich eine KI? Wir erklären die Grundlagen auf dem Mac und zeigen, wie man ein neuronales Netzwerk erzeugt und trainiert.

Artikel verschenken
In Pocket speichern vorlesen Druckansicht 3 Kommentare lesen
,
Lesezeit: 21 Min.
Von
  • JĂĽrgen Schuck
Inhaltsverzeichnis

Künstliche Intelligenz basiert auf der Idee, menschliches Denken zu formalisieren und maschinell auszuführen. Die Grundlagen stammen aus verschiedenen Wissensgebieten und entstanden teilweise schon vor einigen hundert Jahren. Den Begriff prägte der Programmierer John McCarthy auf einem Workshop, der sich unter anderem mit der maschinellen Simulation neuronaler Netzwerke befasste. Sie entstanden aus einer Kombination von Schwellwertelementen – den Neuronen – die zuvor bereits der Kybernetiker Warren McCulloch und der Logiker Walter Pitts als abstrakte Modelle menschlicher Neuronen in die Informatik eingeführt hatten.

Langsame Rechner und eine mühsame manuelle Methode zum Anlernen neuronaler Netzwerke ließen das Forschungsgebiet jedoch stagnieren. Das Anlernproblem beseitigten 1986 David Rumelhart und seine Kollegen mit ihrem Back-Propagation-Algorithmus, der maschinelles Lernen auf verblüffend einfache Weise ermöglicht. Richtig Fahrt nahm das Thema aber erst um 2010 auf, als die KI-Community die Leistungsfähigkeit moderner Grafikchips für ihre Zwecke entdeckte. Neue und leistungsfähigere Typen neuronaler Netzwerke lösen sich seitdem in immer schnellerer Folge ab. Den aktuellen Höhepunkt bilden die sogenannten Transformer, ein generatives neuronales Netzwerk und der State of the Art, das beispielsweise auch ChatGPT zugrunde liegt. Das Asimov Institute hat 2016 den Versuch unternommen, eine vollständige Übersicht der seinerzeit diskutierten Netzwerktypen zu erstellen, "mostly complete", wie sie selbst sagten, und dazu ein anschauliches Poster veröffentlicht.

kurz & knapp
  • KI-Apps verwenden fast ausschlieĂźlich neuronale Netzwerke.
  • Mit wenig Code lässt sich bereits ein einfaches Netzwerk zur Handschrifterkennung programmieren.
  • Neuronale Netzwerke mĂĽssen trainiert werden, das geschieht im vorgestellten Beispiel mit gescannten Ziffern.

Mit einigem Abstand betrachtet, arbeiten fast alle Typen neuronaler Netzwerke nach dem gleichen Prinzip, das zwei Betriebsarten unterscheidet: das Anwenden des Netzwerks auf einen Eingangswert (Prediction) und das Anlernen (Training). Bei der Prediction liefert das Netzwerk einen Wert fĂĽr die Wahrscheinlichkeit, mit der das Ergebnis (Result) mit einem erwarteten Wert (Target) ĂĽbereinstimmt. Beim Training vergleicht das Netzwerk die Werte von Predictions mit den entsprechenden Targets und justiert auf Basis der Differenzen seine interne Konfiguration.

Das war die Leseprobe unseres heise-Plus-Artikels "Das eigene KI-Modell programmieren: So geht's mit Swift". Mit einem heise-Plus-Abo können sie den ganzen Artikel lesen und anhören.