Gas Town: Mad-Max-inspiriertes Framework für Coding-Agenten
Viele gleichzeitig agierende Agenten richten oft mehr Chaos an, als sie Nutzen bringen. Das Tool Gas Town orchestriert im Stil von Mad Max.
(Bild: Orange Dragon Studio/Shutterstock.com)
- Ingo Eichhorst
Mad Max als Vorbild für Softwareentwicklung? Das neue Framework Gas Town des Entwicklers und Bloggers Steve Yegge orchestriert mehr als zehn Coding-Agenten gleichzeitig mit einer Architektur, die von der postapokalyptischen Filmreihe inspiriert ist. Der Ansatz: nicht perfekte Einzelagenten, sondern kontrolliertes Chaos mit Agenten-Rollen wie Bürgermeister, Wächter und Raffinerie, die alle an die Mad-Max-Filme angelehnt sind (siehe Tabelle am Ende des Artikels). Gas Town ist dabei nichts für schwache Nerven oder einen kleinen Geldbeutel.
Yegge betont, dass sich das System noch im Alpha-Stadium befindet und erhebliche Vorkenntnisse zu Coding-Agenten voraussetzt, um mit dem Chaos in der Stadt der Coding-Agenten umgehen zu können. Zudem benötigt man durch die starke Skalierung schnell ein zweites oder drittes Claude-Max-Abonnement von Anthropic, das je nach Variante 100 oder 200 US-Dollar pro Monat kostet.
Gas Town zählt zu einer ganzen Gruppe an Anwendungen, die von der Community derzeit heiß diskutiert werden und deren Ziel es ist, Coding-Agenten zu koordinieren. Zu diesen Orchestratoren gehören zum Beispiel Ralph, Loom oder AutoClaude. Yegge hat das Framework am 1. Januar 2026 veröffentlicht, nach nur siebzehn Tagen Entwicklungszeit. Allerdings steckt im Konzept die Erfahrung von über einem Jahr an Experimenten. Er hat es mithilfe von KI-Agenten in Go geschrieben.
Vom Chaos zur Ordnung
Yegge geht von dem Gedanken aus, dass es schon immer die Aufgabe von Ingenieuren gewesen ist, komplexes Chaos in beherrschbare Strukturen zu verwandeln. Das Tool geht dabei einen Failure Mode nach dem anderen mit unterschiedlichen Konzepten an. Der Autor spricht von nichtdeterministischer Idempotenz, zwei Begriffen, die sich auf den ersten Blick ausschließen, aber durch die Kontrollstrukturen des Frameworks zusammenfinden. Die parallele Arbeit von drei bis fünf Coding- und anderen KI-Agenten kann zu chaotischen Systemzuständen führen. Was passiert beispielsweise, wenn mehrere Agenten an gleichen oder ähnlichen Aufgaben arbeiten? Wer kümmert sich um Merge-Konflikte? Wie lässt sich doppelte Arbeit verhindern? Gas Town bedient sich unterschiedlichster Konzepte, um Ordnung in das Chaos zu bringen (siehe folgende Abbildung).
Ein Arbeitstag des Bürgermeisters in Gas Town
Ein typischer Tag in der Stadt Gas Town beginnt damit, dass der menschliche Entwickler (Overseer) gemeinsam mit dem Hauptagenten, dem Bürgermeister (Mayor), die Aufgaben für den Tag in natürlicher Sprache festlegt. Der Bürgermeister zerlegt diese Aufgaben in kleinere Teilaufgaben und speichert sie im Task-Manager (Beads). Sobald die Vorbereitungen fertig sind, bündelt er Aufgaben in einem Arbeitsauftrag, im Convoy, und schickt sie in eines der Repositories, Rigs. Wenn Gas Town Zugriff auf eine gültige GitHub-Authentifizierung hat, kann der Bürgermeister Repositories einfach klonen und für die Verwendung mit Gas Town initialisieren.
Das Aufteilen der Aufgaben begegnet dem Problem der nachlassenden Qualität der Antworten von Coding-Agenten, je weiter sich ihr Kontextfenster füllt. Bei den Claude-LLMs sind das aktuell 200.000 Token. Bei Erreichen des Limits komprimiert der Coding-Agent die Dialoge, um Platz zu schaffen. In der Praxis führt schon ein zu sechzig Prozent gefülltes Kontextfenster zu einer merklichen Reduktion der Ausgabenqualität.
Im Rig werden Arbeiter-Agenten (Polecats) aktiv, die mit der Abarbeitung von Aufgaben beginnen. Je mehr Aufgaben anliegen, desto mehr Polecats treten in Aktion. Sie schaffen sich mit Git-Worktrees ihre eigene Arbeitsumgebung und kümmern sich eigenständig um die Umsetzung.
Über Mailboxes und Handoffs können sie miteinander kommunizieren. Das Mailbox-System ist von Erlang inspiriert und dient der Kommunikation zwischen langlebigen Agenten, wie dem Bürgermeister und dem Wächter. Handoffs hingegen arbeiten synchron und dienen der Übergabe des Arbeitszustands an eine neue Arbeiter-Instanz, wenn der Kontext über die oben beschriebene kritische Füllmenge hinaus ansteigt.
Da in Gas Town immer mal etwas schiefläuft, beschäftigt der Bürgermeister den Wächter (Deacon), der das Gesamtsystem periodisch analysiert, Zombieprozesse aufräumt, festgefahrene Sessions wieder anstößt und die wichtigsten Systemfunktionen am Leben hält. Im Unterschied zum Wächter, der auf Systemebene patrouilliert, überwacht der Aufseher (Witness) innerhalb eines Rigs einzelne Agenten. Jeden Agenten, den er etwa beim Faulenzen erwischt, ermordet er eiskalt und ersetzt ihn.
Videos by heise
Merge-Konflikte: Die Raffinerie sortiert
Mit mehreren Agenten kommt es zu vielen parallelen Änderungen, doppelter Arbeit und unzähligen Merge-Konflikten. Außerdem berichten mehr und mehr Entwicklerinnen und Entwickler, dass die Freude an ihrem Job abgenommen hat, seit sie nur noch Code von KI-Agenten reviewen.
Um diesen Problemen Herr zu werden, gibt es in Gas Town eine Raffinerie. Sie überprüft alle Arbeitsergebnisse der Agenten und räumt auf. Merge-Konflikte und schlechte Codequalität bekämpft sie mehrheitlich durch Qualitätskriterien, die sich über konfigurierbare Review-Presets und ein projektspezifisches CLAUDE.md anlegen lassen.
Nachdem alle Aufgaben abgeschlossen sind, meldet der Bürgermeister dem Entwickler stolz die erfolgreiche Abarbeitung der Convoy-Aufgabengruppe.
Agenten in Gas Town stellen austauschbare Instanzen dar, vergleichbar mit dem Konzept von Cattle statt Pets bei der Orchestrierung der Infrastruktur mit virtuellen Maschinen oder Containern, etwa mit Kubernetes. Auch darüber hinaus hat das Framework viel mit Kubernetes gemeinsam: Es gibt eine Control Plane (Bürgermeister und Wächter), die eine Data Plane (die Polecats und Aufseher) managen. Dabei sind die Arbeiter-Agenten (Polecats) austauschbar: Wenn sie den Dienst niederlegen oder stecken bleiben, werden sie durch eine neue Instanz ersetzt, ohne dass der Kontext aus der letzten Session verloren geht.
Sweeps: Garbage Collection für technische Schulden
Wenn Entwicklerinnen und Entwickler blind mit Agenten Code produzieren, akkumulieren sich auf Dauer die technischen Schulden. Die tauchen auch als Fehlannahmen (Heresies) im inneren Monolog der Agenten auf, und menschliche Entwickler können sie darüber aufspüren und nachvollziehen. Grund für die Fehler ist oft das eingeschränkte Kontextfenster, aufgrund dessen Agenten aus dem Blick verlieren, was in der letzten Session vorgefallen ist. Früher gewählte Ansätze geraten in Vergessenheit und Agenten wählen mitunter fremde Designmethoden, die die Architekturkonsistenz verletzen. In einer größeren Codebasis können beispielsweise drei bis vier unterschiedliche Logging Libraries auftauchen.
Um dem zu begegnen, erfordert es sorgfältige Reviews durch Menschen, was wiederum am Produktivitätsgewinn durch die multiplen Agenten nagt. Gas Town wählt eine andere Strategie, die auf Stichproben basiert, den Sweeps: systematische Korrekturwellen, die Architektur-Drift und schlechte Praktiken eindämmen, ohne dass Entwickler alle Fehlannahmen bedenken oder alle Codezeilen einzeln analysieren müssen. Ein sechzigminütiger Review-Sweep mündet in konkreten Aufgaben für das Task-Management (Beads), die so in den Kontext der beteiligten Agenten gelangen. Das lenkt künftige Entscheidungen in die Richtung, die die menschlichen Entwickler für richtig halten.
Um einen Sweep zu starten, lassen sich Entwickler vom Bürgermeister über einen persistenten Workspace (~/gas-town/<rig>/crew/<entwickler-name>/rig/) einen Git-Worktree erzeugen und sehen dort die Arbeitsergebnisse eines Convoys wie gewohnt in der IDE oder im Terminal. Anstatt selbst Änderungen vorzunehmen, beauftragen sie den Bürgermeister mit der Erstellung von Korrekturaufgaben. Diese ändern das Verhalten der Agenten und führen zu einer weiteren Erhöhung der Codequalität. Nach und nach steigert sich so das Vertrauen in die Agentenschar und der Aufwand für Sweeps reduziert sich. Sweeps stellen eine Art Garbage Collection für technische Schulden dar. Zusätzlich sollten Developer aber nicht auf die gängigen Kontrollmethoden wie Rule-Dateien (AGENT.md oder CLAUDE.md) und statische Quality Gates wie Fitness Functions oder statische Codeanalyse verzichten.