zurück zum Artikel

Die C-Rate: Mit welcher Ladeleistung in Elektroautos gerechnet werden darf

Christoph M. Schwarzer

Catl beliefert viele Elektroauto-Hersteller, darunter auch Mercedes. Das Bild zeigt ein komplettes Batteriesystem, blau dargestellt die einzelnen Zellen.

(Bild: Mercedes)

Die C-Rate ist ein Vergleichsmaßstab für die Ladeleistung von Batterien verschiedener Größe. Ihr aktueller Anstieg liegt am verbesserten Temperaturmanagement.

Wer bietet weniger? Es dauert 45 Minuten, um die Traktionsbatterie des Kia Niro auf einen Ladestand von 80 Prozent zu bringen. Im VW ID.3 sind es nach der Werksangabe 35 Minuten. Beim Hyundai Ioniq 5 reichen dafür 18 Minuten. Die Qilin-Batterie des Weltmarktführers CATL braucht nur zehn Minuten. Wir wissen nicht, in welchem Elektroauto die Qilin-Batterie zuerst eingebaut wird. Nur, dass es Anfang 2023 so weit sein soll.

Die Hersteller veröffentlichen diese Werte, um den Interessenten eine praxisnahe Einschätzung zu geben, wie lange der Stopp an der Ladesäule minimal dauert. Die Minutenzahl ist ein leicht verständlicher Maßstab. Der Fachbegriff für den Vergleich der Ladegeschwindigkeit aber ist die C-Rate. Zurzeit wächst sie scheinbar unaufhaltsam.

Eigentlich bezeichnet die C-Rate, manchmal auch C-Koeffizient genannt, die Stromstärke in Ampere, mit der eine Batterie be- oder entladen wird. Sie bezieht sich grundsätzlich auf den maximalen Energieinhalt. Das ist die Basis, um die Ladegeschwindigkeit von Batteriesystemen mit unterschiedlicher Kapazität vergleichen zu können. 1C bedeutet, dass das komplette Be- oder Entladen eine Stunde dauert. Die meisten modernen Elektroautos liegen über diesem Wert. Die gängige Definition der C-Rate in der Praxis bezieht sich auf 75 Prozent des Ladehubs und wird meistens auf den kompletten Vorgang übertragen bzw. von dort hochgerechnet.

Beispiel VW ID.3 mit 58-kWh-Batterie: Volkswagen gibt wie oben erwähnt 35 Minuten bis 80 Prozent an. Es ist wichtig, bei allen Herstellern das Kleingedruckte zu lesen, nämlich den SOC (für State Of Charge oder Ladestand) zu Beginn. Volkswagen fängt bei fünf Prozent an – die 35 Minuten beziehen sich also auf einen Hub von 75 Prozent. Andere Hersteller starten bei 10 oder gar 15 Prozent, deren Ladehub ist also kleiner. Eine vollständige Ladung würde im ID.3 rechnerisch(!) also knapp 47 Minuten dauern. Die mittlere C-Rate liegt demnach bei etwa 1,3 - hochgerechnet von der durchschnittlichen Ladeleistung im Ladefenster von 5 bis 80 Prozent SOH.

Qilin-Batterie

CATL sagt, dass die neue Qilin-Batterie in zehn Minuten auf 80 Prozent laden soll. Das entspricht, wenn man von einem Ladestand beim Start von zehn Prozent ausgeht, abgerundet ungefähr 4C: In einer Stunde wäre das Batteriesystem rechnerisch vier Mal komplett geladen; es ist real also eine Viertelstunde. CATL setzt damit eine Rekordmarke für Seriensysteme.

(Bild: CATL)

In der Lebenspraxis muss beachtet werden, dass die Industrie die Zellen des Systems im Verlauf eines Ladevorgangs meistens nicht gleichmäßig belastet. Viele Elektroautofahrer kennen das Phänomen, wenn sie an der Autobahn auf das Display der Säule beim Schnellladen gucken: Die Spannung in Volt steigt langsam an und nähert sich dem Maximum im Batteriesystem. Die Stromstärke in Ampere wiederum wird im Regelfall schrittweise deutlich reduziert; folglich sinkt die erzielbare Ladeleistung – dem mathematischen Produkt aus Spannung und Stromstärke – in Kilowatt.

Über die Wartezeit ergibt sich eine Ladekurve in Kilowatt, die ihren Peak in vielen Elektroautos bei niedrigen SOC hat. Das ist eine Auslegungsfrage; Audi etwa reguliert den e-tron anders, nämlich so konstant, dass sich eher ein Plateau als eine Kurve ergibt. Wie aber schafft es CATL mit der Qilin-Batterie in zehn Minuten auf 80 Prozent zu kommen?

CATL gibt an, 4C erreichen zu können - unabhängig davon, ob Lithium-Eisenphosphat- (LFP) oder Nickel-Mangan-Kobalt- (NMC) Zellen im System eingebaut werden. Qilin ist für beides vorbereitet. 4C bedeutet, dass die Traktionsbatterie in einer Viertelstunde komplett be- oder entladen werden kann. Der Ladehub von zehn auf 80 Prozent SOC würde also 10,5 Minuten dauern, was CATL offenbar abgerundet hat – eine werbetypische Unschärfe.

Qilin-Batterie

Die technische Voraussetzung, um hohe C-Raten zu erreichen, ist ein perfektes Temperaturmanagement. CATL hat die Kühlfläche, die Teil einer Funktionsebene zwischen den Zellen ist, gegenüber dem Vorgänger vervierfacht. Heizen ist mindestens genauso wichtig, weil das Laden von kalten Zellen die zyklische Dauerhaltbarkeit ruiniert ("Lithium-Plating"). Die C-Rate ist durch das Anodenmaterial begrenzt, das heute Graphit ist. In Zukunft werden Siliziumbeimischungen, wie es sie heute in geringem Ausmaß zum Beispiel bei Porsche gibt, für einen Zuwachs sorgen.

(Bild: CATL)

Entscheidend für diese Fähigkeit ist nach heutigen Maßstäben vorwiegend das Temperaturmanagement. Anders gesagt: Die Zellen im Batteriesystem müssen die ideale Temperatur haben und beim Laden auch behalten. Der Schlüssel fürs schadensfreie Schnellladen ist eine leistungsstarke Heizung oder Kühlung – je nachdem, was gerade erforderlich ist.

Qilin-Batterie

Und nochmal die Qilin-Batterie von CATL: Das bessere Temperaturmanagement führt zu höheren C-Raten und folglich zu kürzeren Standzeiten. Über bessere Batteriesysteme könnte also unabhängig von der Gesamtkapazität der Traktionsbatterie das Queuing an Ladeparks minimiert werden.

(Bild: CATL)

CATL löst das vor allem über eine überarbeitete Kühlebene zwischen den Zellen. Deren Fläche hat sich gegenüber dem konventionellen Vorgängersystem von CATL vervierfacht. Diese Funktionsebene zwischen den Zellen ist auch für die Erwärmung zuständig.

Das Vorheizen der Batteriezellen vor dem Laden ist elementar für die Dauerhaltbarkeit. Kalte Zellen, die zu stark belastet werden, degradieren extrem schnell. Es kommt zur Abscheidung von metallischem Lithium; auch der englische Begriff "Lithium-Plating" wird oft zitiert. Das Lithium-Plating ruiniert die zyklische Haltbarkeit. Eine gezielte automatische Vorheizung ist in dieser Hinsicht noch wichtiger als die Kühlung. Zwar reduziert das Softwaremanagement ohnehin den Ladestrom – besser ist es aber, wenn die optimale Temperatur herbeigeführt wird.

Die meisten modernen Elektroautos haben eine Routenführung mit automatischer Vorkonditionierung. So wie Tesla es vorgemacht hat: Bei der Start-Ziel-Navigation werden in Abhängigkeit der Standorte und der Ladekurve die klügsten Stopps errechnet. Das Batteriesystem bereitet das Laden durch Heizen oder Kühlen bestmöglich vor.

Tesla Model Y

Die Qilin-Batterie soll in Kürze verfügbar sein. Wir spekulieren: Es könnte ein Tesla für den chinesischen Markt sein, in dem das System zuerst zum Einsatz kommt.

(Bild: Tesla)

Das lässt sich am Momentanverbrauch ablesen. In unseren Breitengraden muss mehr geheizt als gekühlt werden: Der Stromkonsum steigt ein paar Minuten vor dem avisierten Ladestopp deutlich an. Ja, das schlägt sich auch im Durchschnittsverbrauch merklich nieder. Aber im Gegenzug steht man kürzer an der Säule, und die Dauerhaltbarkeit ist, so gut technisch möglich, gewährleistet.

Bei Tesla, Mercedes und BMW ist die Vorkonditionierung zum Erreichen der maximalen C-Rate nahezu durchgehend vorhanden. Auch Renault Megane E-Tech oder der Polestar 2 beherrschen das. Hyundai zieht gerade nach – das ist erfreulich, denn bei Hyundai Ioniq 5 und Kia EV6 war die Differenz zwischen Papierform und Realität bei Kälte besonders groß.

Nur die Nutzer des Modularen Elektrifizierungs-Baukastens (MEB) in der VW ID-Serie, im Skoda Enyaq (Test) [1] oder im Audi Q4 e-tron (Test) [2] müssen noch etwas warten: Dem Vernehmen nach soll die Softwareversion 3.2 endlich für Abhilfe sorgen – das ist überfällig.

Ladekurve Audi e-tron

Die durchschnittliche C-Rate macht keine Aussage über den Verlauf der Ladekurve. Sie kann sehr konstant sein, wie dieses Plateau des Audi e-tron zeigt.

(Bild: Fastned)

Bei jedem Treffen von Batteriefachleuten ist derzeit die Rede von 4C für das Jahr 2025 und 5C bis 2030. So könnte auch das Queuing – das Schlangestehen vor Ladesäulen zu Stoßzeiten – reduziert werden, weil die notwendige Mindeststandzeit schrumpft. Länger als erforderlich will angesichts der Preise ohnehin keiner stehen. Der wichtigste Faktor, um das zu erreichen, ist wie beschrieben ein leistungsstarkes Temperaturmanagement.

Ladekurve Porsche Taycan

Die meisten Elektroautos aber haben einen Peak bei niedrigen Ladeständen und lassen im Verlauf deutlich nach. Die Werte eines Porsche Taycan sind trotzdem beeindruckend.

(Bild: Fastned)

Die Zellchemie selbst hat eine untergeordnete Rolle. "Die Limitierung der C-Rate ist im Anodenmaterial begründet", erklärt Prof. Markus Hölzle [3] vom Zentrum für Sonnenenergie- und Wasserstoff-Forschung Baden-Württemberg (ZSW). "Hier wird bisher fast immer Graphit eingesetzt. Neue Silizium-Graphit-Kompositanoden könnten in naher Zukunft höhere C-Raten ermöglichen", meint Hölzle. Die Kombination aus Anoden mit Siliziumbeimischung und perfektem Temperaturmanagement ist also das nächste Ziel.

Weil die C-Rate unabhängig von der Batteriekapazität steigt, ist das auch für die kommenden Kunden von preisgünstigen Elektroautos eine gute Nachricht: Solange der Hersteller nur an der Gesamtkapazität, nicht aber am Temperaturmanagement spart, profitieren auch solche Elektroautos von hohen C-Raten. Wenn etwa ein Peugeot e-208 (Test) [4] lediglich den Bauraum für 48 kWh Energieinhalt hat, könnte er trotzdem schnell laden. Das wäre sinnvoll im Sinn eines geringen Materialbedarfs. Stand heute sind es aber gerade die Elektroautos im kostensensiblen Segment [5], die mit unzureichender Heizung oder Kühlung ihres Speichers verkauft werden. Das sollte sich dringend ändern.

(fpi [6])


URL dieses Artikels:
https://www.heise.de/-7284773

Links in diesem Artikel:
[1] https://www.heise.de/tests/Elektroauto-Skoda-Enyaq-Coupe-im-Test-Nachholbedarf-bei-Software-und-Batterie-7278580.html
[2] https://www.heise.de/tests/Elektroauto-Audi-Q4-e-tron-Der-teure-VW-ID-4-Ableger-im-Test-6196125.html
[3] https://www.zsw-bw.de/?id=380
[4] https://www.heise.de/tests/Peugeots-Elektro-Auto-e-208-im-Test-Bei-Frost-ein-Grossabnehmer-4986311.html
[5] https://www.heise.de/tests/Billig-Elektroauto-Dacia-Spring-im-Test-Die-Kunst-des-Weglassens-6545209.html
[6] mailto:fpi@heise.de