Machine Learning: TensorFlow-Benchmarks auf MacBooks mit M1 Pro und M1 Max
Die Apple-Chips M1 Pro und M1 Max mit ihren 16 beziehungsweise 32 GPU-Kernen bringen einen Leistungsschub fĂĽr High-End-MacBooks. Das kann die Hardware.
- Ramon Wartala
Seit Ende 2021 gibt es erste Macs, die statt Intels Core i5, i7 oder i9 Apples eigenes System-on-a-Chip (SoC) M1 nutzen. Nach MacBook Air und Mac mini ist der M1 nun auch auf MacBook Pro, iMac und dem iPad Pro angekommen. Der M1 basiert auf der ARM-Architektur und integriert CPU-Kerne fĂĽr hohe Leistung mit entsprechend hoher Energieaufnahme, CPU-Kerne fĂĽr sparsamen Stromverbrauch, GPU- sowie die als Neural Engines oder Neural Processing Units (NPU) bezeichneten Kerne fĂĽr die schnelle Berechnung von Grafik- sowie Machine-Learning-Aufgaben. Nach dem M1 brachte Apple Ende Oktober 2021 mit dem M1 Pro und dem M1 Max zwei SoCs der gleichen Familie heraus, allerdings mit deutlich mehr Kernen. Hier sollen sie zeigen, unter welchen Bedingungen und mit welchem Tooling sie sich fĂĽr Machine-Learning-Anwendungen einsetzen lassen und wie schnell sie im direkten Vergleich sind.
Frischer Wind nach Stagnation
Der Ära des M1 ging bei Apple eine längere Stagnationsphase bei Grafikhardware voraus. Aufmerksame Beobachter vermuteten deshalb bereits, dass der Konzern an einer eigenen CPU arbeitet. Apples Kompromisse bekam nicht nur die Gaming-Branche zu spüren, die auf dem Mac keine standardisierte Hardware nutzen konnte. Auch andere Branchen mit höheren Anforderungen an die Berechnungsgeschwindigkeit großer Zahlenmengen wurden dadurch über Jahre in ihrer Entwicklung gehemmt und wechselten auf andere Systeme.
Die auf wissenschaftliche Berechnungen und Machine-Learning-Anwendungen spezialisierten Nvidia-GPUs blieben den Mac-Nutzern verwehrt. Externe Lösungen wie die Thunderbolt 3 Enclosure (eGPUs), zum Beispiel von Herstellern wie Sonnet, Blackmagic oder Gigabyte, wurden nur unzureichend mit Treibern versorgt. Zumindest für CAD und Spiele konnten diese Lösungen ab macOS High Sierra (10.13) mit Radeon-RX-Grafikkarten von AMD genutzt werden, aber CUDA-optimierte Machine Learning Frameworks wurden hier nahezu vollständig ausgesperrt.
Das war die Leseprobe unseres heise-Plus-Artikels "Machine Learning: TensorFlow-Benchmarks auf MacBooks mit M1 Pro und M1 Max". Mit einem heise-Plus-Abo können sie den ganzen Artikel lesen und anhören.